378 lines
15 KiB
Python
378 lines
15 KiB
Python
import inspect
|
|
from functools import wraps
|
|
|
|
import sentry_sdk
|
|
from sentry_sdk.ai.monitoring import record_token_usage
|
|
from sentry_sdk.ai.utils import set_data_normalized
|
|
from sentry_sdk.consts import OP, SPANDATA
|
|
from sentry_sdk.integrations import DidNotEnable, Integration
|
|
from sentry_sdk.scope import should_send_default_pii
|
|
from sentry_sdk.tracing_utils import set_span_errored
|
|
from sentry_sdk.utils import (
|
|
capture_internal_exceptions,
|
|
event_from_exception,
|
|
)
|
|
|
|
from typing import TYPE_CHECKING
|
|
|
|
if TYPE_CHECKING:
|
|
from typing import Any, Callable, Iterable
|
|
|
|
try:
|
|
import huggingface_hub.inference._client
|
|
except ImportError:
|
|
raise DidNotEnable("Huggingface not installed")
|
|
|
|
|
|
class HuggingfaceHubIntegration(Integration):
|
|
identifier = "huggingface_hub"
|
|
origin = f"auto.ai.{identifier}"
|
|
|
|
def __init__(self, include_prompts=True):
|
|
# type: (HuggingfaceHubIntegration, bool) -> None
|
|
self.include_prompts = include_prompts
|
|
|
|
@staticmethod
|
|
def setup_once():
|
|
# type: () -> None
|
|
|
|
# Other tasks that can be called: https://huggingface.co/docs/huggingface_hub/guides/inference#supported-providers-and-tasks
|
|
huggingface_hub.inference._client.InferenceClient.text_generation = (
|
|
_wrap_huggingface_task(
|
|
huggingface_hub.inference._client.InferenceClient.text_generation,
|
|
OP.GEN_AI_GENERATE_TEXT,
|
|
)
|
|
)
|
|
huggingface_hub.inference._client.InferenceClient.chat_completion = (
|
|
_wrap_huggingface_task(
|
|
huggingface_hub.inference._client.InferenceClient.chat_completion,
|
|
OP.GEN_AI_CHAT,
|
|
)
|
|
)
|
|
|
|
|
|
def _capture_exception(exc):
|
|
# type: (Any) -> None
|
|
set_span_errored()
|
|
|
|
event, hint = event_from_exception(
|
|
exc,
|
|
client_options=sentry_sdk.get_client().options,
|
|
mechanism={"type": "huggingface_hub", "handled": False},
|
|
)
|
|
sentry_sdk.capture_event(event, hint=hint)
|
|
|
|
|
|
def _wrap_huggingface_task(f, op):
|
|
# type: (Callable[..., Any], str) -> Callable[..., Any]
|
|
@wraps(f)
|
|
def new_huggingface_task(*args, **kwargs):
|
|
# type: (*Any, **Any) -> Any
|
|
integration = sentry_sdk.get_client().get_integration(HuggingfaceHubIntegration)
|
|
if integration is None:
|
|
return f(*args, **kwargs)
|
|
|
|
prompt = None
|
|
if "prompt" in kwargs:
|
|
prompt = kwargs["prompt"]
|
|
elif "messages" in kwargs:
|
|
prompt = kwargs["messages"]
|
|
elif len(args) >= 2:
|
|
if isinstance(args[1], str) or isinstance(args[1], list):
|
|
prompt = args[1]
|
|
|
|
if prompt is None:
|
|
# invalid call, dont instrument, let it return error
|
|
return f(*args, **kwargs)
|
|
|
|
client = args[0]
|
|
model = client.model or kwargs.get("model") or ""
|
|
operation_name = op.split(".")[-1]
|
|
|
|
span = sentry_sdk.start_span(
|
|
op=op,
|
|
name=f"{operation_name} {model}",
|
|
origin=HuggingfaceHubIntegration.origin,
|
|
)
|
|
span.__enter__()
|
|
|
|
span.set_data(SPANDATA.GEN_AI_OPERATION_NAME, operation_name)
|
|
|
|
if model:
|
|
span.set_data(SPANDATA.GEN_AI_REQUEST_MODEL, model)
|
|
|
|
# Input attributes
|
|
if should_send_default_pii() and integration.include_prompts:
|
|
set_data_normalized(
|
|
span, SPANDATA.GEN_AI_REQUEST_MESSAGES, prompt, unpack=False
|
|
)
|
|
|
|
attribute_mapping = {
|
|
"tools": SPANDATA.GEN_AI_REQUEST_AVAILABLE_TOOLS,
|
|
"frequency_penalty": SPANDATA.GEN_AI_REQUEST_FREQUENCY_PENALTY,
|
|
"max_tokens": SPANDATA.GEN_AI_REQUEST_MAX_TOKENS,
|
|
"presence_penalty": SPANDATA.GEN_AI_REQUEST_PRESENCE_PENALTY,
|
|
"temperature": SPANDATA.GEN_AI_REQUEST_TEMPERATURE,
|
|
"top_p": SPANDATA.GEN_AI_REQUEST_TOP_P,
|
|
"top_k": SPANDATA.GEN_AI_REQUEST_TOP_K,
|
|
"stream": SPANDATA.GEN_AI_RESPONSE_STREAMING,
|
|
}
|
|
|
|
for attribute, span_attribute in attribute_mapping.items():
|
|
value = kwargs.get(attribute, None)
|
|
if value is not None:
|
|
if isinstance(value, (int, float, bool, str)):
|
|
span.set_data(span_attribute, value)
|
|
else:
|
|
set_data_normalized(span, span_attribute, value, unpack=False)
|
|
|
|
# LLM Execution
|
|
try:
|
|
res = f(*args, **kwargs)
|
|
except Exception as e:
|
|
_capture_exception(e)
|
|
span.__exit__(None, None, None)
|
|
raise e from None
|
|
|
|
# Output attributes
|
|
finish_reason = None
|
|
response_model = None
|
|
response_text_buffer: list[str] = []
|
|
tokens_used = 0
|
|
tool_calls = None
|
|
usage = None
|
|
|
|
with capture_internal_exceptions():
|
|
if isinstance(res, str) and res is not None:
|
|
response_text_buffer.append(res)
|
|
|
|
if hasattr(res, "generated_text") and res.generated_text is not None:
|
|
response_text_buffer.append(res.generated_text)
|
|
|
|
if hasattr(res, "model") and res.model is not None:
|
|
response_model = res.model
|
|
|
|
if hasattr(res, "details") and hasattr(res.details, "finish_reason"):
|
|
finish_reason = res.details.finish_reason
|
|
|
|
if (
|
|
hasattr(res, "details")
|
|
and hasattr(res.details, "generated_tokens")
|
|
and res.details.generated_tokens is not None
|
|
):
|
|
tokens_used = res.details.generated_tokens
|
|
|
|
if hasattr(res, "usage") and res.usage is not None:
|
|
usage = res.usage
|
|
|
|
if hasattr(res, "choices") and res.choices is not None:
|
|
for choice in res.choices:
|
|
if hasattr(choice, "finish_reason"):
|
|
finish_reason = choice.finish_reason
|
|
if hasattr(choice, "message") and hasattr(
|
|
choice.message, "tool_calls"
|
|
):
|
|
tool_calls = choice.message.tool_calls
|
|
if (
|
|
hasattr(choice, "message")
|
|
and hasattr(choice.message, "content")
|
|
and choice.message.content is not None
|
|
):
|
|
response_text_buffer.append(choice.message.content)
|
|
|
|
if response_model is not None:
|
|
span.set_data(SPANDATA.GEN_AI_RESPONSE_MODEL, response_model)
|
|
|
|
if finish_reason is not None:
|
|
set_data_normalized(
|
|
span,
|
|
SPANDATA.GEN_AI_RESPONSE_FINISH_REASONS,
|
|
finish_reason,
|
|
)
|
|
|
|
if should_send_default_pii() and integration.include_prompts:
|
|
if tool_calls is not None and len(tool_calls) > 0:
|
|
set_data_normalized(
|
|
span,
|
|
SPANDATA.GEN_AI_RESPONSE_TOOL_CALLS,
|
|
tool_calls,
|
|
unpack=False,
|
|
)
|
|
|
|
if len(response_text_buffer) > 0:
|
|
text_response = "".join(response_text_buffer)
|
|
if text_response:
|
|
set_data_normalized(
|
|
span,
|
|
SPANDATA.GEN_AI_RESPONSE_TEXT,
|
|
text_response,
|
|
)
|
|
|
|
if usage is not None:
|
|
record_token_usage(
|
|
span,
|
|
input_tokens=usage.prompt_tokens,
|
|
output_tokens=usage.completion_tokens,
|
|
total_tokens=usage.total_tokens,
|
|
)
|
|
elif tokens_used > 0:
|
|
record_token_usage(
|
|
span,
|
|
total_tokens=tokens_used,
|
|
)
|
|
|
|
# If the response is not a generator (meaning a streaming response)
|
|
# we are done and can return the response
|
|
if not inspect.isgenerator(res):
|
|
span.__exit__(None, None, None)
|
|
return res
|
|
|
|
if kwargs.get("details", False):
|
|
# text-generation stream output
|
|
def new_details_iterator():
|
|
# type: () -> Iterable[Any]
|
|
finish_reason = None
|
|
response_text_buffer: list[str] = []
|
|
tokens_used = 0
|
|
|
|
with capture_internal_exceptions():
|
|
for chunk in res:
|
|
if (
|
|
hasattr(chunk, "token")
|
|
and hasattr(chunk.token, "text")
|
|
and chunk.token.text is not None
|
|
):
|
|
response_text_buffer.append(chunk.token.text)
|
|
|
|
if hasattr(chunk, "details") and hasattr(
|
|
chunk.details, "finish_reason"
|
|
):
|
|
finish_reason = chunk.details.finish_reason
|
|
|
|
if (
|
|
hasattr(chunk, "details")
|
|
and hasattr(chunk.details, "generated_tokens")
|
|
and chunk.details.generated_tokens is not None
|
|
):
|
|
tokens_used = chunk.details.generated_tokens
|
|
|
|
yield chunk
|
|
|
|
if finish_reason is not None:
|
|
set_data_normalized(
|
|
span,
|
|
SPANDATA.GEN_AI_RESPONSE_FINISH_REASONS,
|
|
finish_reason,
|
|
)
|
|
|
|
if should_send_default_pii() and integration.include_prompts:
|
|
if len(response_text_buffer) > 0:
|
|
text_response = "".join(response_text_buffer)
|
|
if text_response:
|
|
set_data_normalized(
|
|
span,
|
|
SPANDATA.GEN_AI_RESPONSE_TEXT,
|
|
text_response,
|
|
)
|
|
|
|
if tokens_used > 0:
|
|
record_token_usage(
|
|
span,
|
|
total_tokens=tokens_used,
|
|
)
|
|
|
|
span.__exit__(None, None, None)
|
|
|
|
return new_details_iterator()
|
|
|
|
else:
|
|
# chat-completion stream output
|
|
def new_iterator():
|
|
# type: () -> Iterable[str]
|
|
finish_reason = None
|
|
response_model = None
|
|
response_text_buffer: list[str] = []
|
|
tool_calls = None
|
|
usage = None
|
|
|
|
with capture_internal_exceptions():
|
|
for chunk in res:
|
|
if hasattr(chunk, "model") and chunk.model is not None:
|
|
response_model = chunk.model
|
|
|
|
if hasattr(chunk, "usage") and chunk.usage is not None:
|
|
usage = chunk.usage
|
|
|
|
if isinstance(chunk, str):
|
|
if chunk is not None:
|
|
response_text_buffer.append(chunk)
|
|
|
|
if hasattr(chunk, "choices") and chunk.choices is not None:
|
|
for choice in chunk.choices:
|
|
if (
|
|
hasattr(choice, "delta")
|
|
and hasattr(choice.delta, "content")
|
|
and choice.delta.content is not None
|
|
):
|
|
response_text_buffer.append(
|
|
choice.delta.content
|
|
)
|
|
|
|
if (
|
|
hasattr(choice, "finish_reason")
|
|
and choice.finish_reason is not None
|
|
):
|
|
finish_reason = choice.finish_reason
|
|
|
|
if (
|
|
hasattr(choice, "delta")
|
|
and hasattr(choice.delta, "tool_calls")
|
|
and choice.delta.tool_calls is not None
|
|
):
|
|
tool_calls = choice.delta.tool_calls
|
|
|
|
yield chunk
|
|
|
|
if response_model is not None:
|
|
span.set_data(
|
|
SPANDATA.GEN_AI_RESPONSE_MODEL, response_model
|
|
)
|
|
|
|
if finish_reason is not None:
|
|
set_data_normalized(
|
|
span,
|
|
SPANDATA.GEN_AI_RESPONSE_FINISH_REASONS,
|
|
finish_reason,
|
|
)
|
|
|
|
if should_send_default_pii() and integration.include_prompts:
|
|
if tool_calls is not None and len(tool_calls) > 0:
|
|
set_data_normalized(
|
|
span,
|
|
SPANDATA.GEN_AI_RESPONSE_TOOL_CALLS,
|
|
tool_calls,
|
|
unpack=False,
|
|
)
|
|
|
|
if len(response_text_buffer) > 0:
|
|
text_response = "".join(response_text_buffer)
|
|
if text_response:
|
|
set_data_normalized(
|
|
span,
|
|
SPANDATA.GEN_AI_RESPONSE_TEXT,
|
|
text_response,
|
|
)
|
|
|
|
if usage is not None:
|
|
record_token_usage(
|
|
span,
|
|
input_tokens=usage.prompt_tokens,
|
|
output_tokens=usage.completion_tokens,
|
|
total_tokens=usage.total_tokens,
|
|
)
|
|
|
|
span.__exit__(None, None, None)
|
|
|
|
return new_iterator()
|
|
|
|
return new_huggingface_task
|